Study : Methane-rich water induces bulblet formation of scale cuttings in Lilium davidii var. unicolor by regulating the signal transduction of phytohormones and their levels

Identification

Name
Methane-rich water induces bulblet formation of scale cuttings in Lilium davidii var. unicolor by regulating the signal transduction of phytohormones and their levels
Identifier
dXJuOkVWQS9zdHVkeS9QUkpOQTcwNTg5OA==
Source
Description
Previous studies have shown that methane (CH4) has promoting roles in the adventitious root (AR) and lateral root formation in plants. However, whether CH4 could trigger the bulblet formation in scale cutting of Lilium davidii var. unicolor has not been elucidated. To gain insight into the effect of CH4 on the bulblet formation, different concentrations (1%, 10%,50% and 100%) of methane-rich water (MRW) and distilled water were applied to treat the scale cuttings of Lilium. We observed that treatment with 100% MRW obviously induced the bulblet formation in scale cuttings. To explore the mechanism of CH4-induced the bulblet formation, the transcriptome of scales was analyzed. A total of 2078 differentially expressed genes (DEGs) were identified. The DEGs were classified into different metabolism pathways, especially phenylpropanoid biosynthesis, starch and sucrose metabolism and plant signal transduction. Of these, approximately 38 candidate DEGs involved in the plant signal transduction were further studied. In addition, the expression of AP2-ERF/ERF, WRKY, GRAS, ARF and NAC transcription factors were changed by MRW treatment, suggesting their potential involvement in bulblet formation. As for hormones, exogenous IAA, GA and ABA could indue the bulblet formation. Additional experiments suggested that MRW could increase the endogenous IAA, GA, and JA levels, but decrease the levels of ABA during bulblet formation, which showed that higher IAA, GA, JA levels and lower ABA content might facilitate bulblet formation. In addition, the levels of endogenous hormone were consistent with the expression level of genes involved in phytohormone signal transduction. Overall, this study has revealed that CH4 might improve the bulblet formation of cutting scales in Lilium by regulating the expression of genes related to phytohormone signal transduction and transcription factors, as well as by changing the endogenous hormone levels. Overall design: Scales (cutting from the base of scales about 2 cm) of Lilium were harvested after 10 days treatment with 100% methane-rich water and distilled water, and RNA was extracted and sequenced by paired-end sequencing. RNA sequencing reads were aligned against the soybean reference genome and differentially expressed genes between treatments were detected.

Genotype

Accession number Name Taxon