Study : Transcriptome analysis of Prunus spp. plants under flooding stress

Identification

Name
Transcriptome analysis of Prunus spp. plants under flooding stress
Identifier
dXJuOkVWQS9zdHVkeS9QUkpOQTYzMzUwNw==
Source
Description
Purpose: The State of Rio Grande do Sul is the largest producer of peaches from Brazil. However, it still has low values of productivity when compared to other States. One of the problems associated to it this is the occurrence of drainage soils problems, which can suffer flooding situations potentially hampering the development and productivity such culture. For studies to assist in the selection of flood tolerant genotypes, it is essential to understand the physiological and molecular changes of the plants in situations of oxygen deprivation. Using Illumina Hiseq2500 we performed transcriptome analysis of leaves from ‘Capdeboscq’ (Prunus persica) and ‘Julior’ (Prunus insititia x Prunus domestica) rootstocks under flooding for 48 hours. Methods: The mRNA of Prunus spp. plants cv. Capdeboscq e Julior was generated using deep sequencing, in triplicate, using Illumina Hi-Seq 2500, for the following treatments:I) control: plants received irrigation daily until field capacity; and II) plants exposed to flood stress, maintaining a water level of approximately 3 cm above the ground. The sequence reads that passed quality filters were analyzed at the transcript level using this method: Mapping using STAR and identification of differentially expressed genes (DEGs) was performed with the edgeR (false discovery rates - FDRs of <0.05). RT–qPCR validation was performed using SYBR Green assays. Results: Flooding stress causes important high transcriptional changes in the ‘Capdeboscq’ compared to Julior and this is mainly due to their sensitivity/tolerance levels. ‘Capdeboscq’ had photosynthesis as the most affected physiological process at the molecular level, showing a large number of down-regulated enriched GOs, even though it activated cellular signaling pathways under flooding. Julior was more efficient in defense responses, which include the activation of flavonoid biosynthesis pathways. Conclusions: The analysis of two Prunus spp. rootstocks contrasting to the level of tolerance / sensitivity provide new insights into the process of plant flood stress tolerance. Overall design: mRNA profiles of Prunus spp. plants under flooding stress were generated by deep sequencing, in duplicate, using Illumina Hi-seq 2500.

Genotype

Accession number Name Taxon