Study : Transcriptome analysis of a chlorosis mutant of Pakchoi

Identification

Name
Transcriptome analysis of a chlorosis mutant of Pakchoi
Identifier
dXJuOkVWQS9zdHVkeS9QUkpOQTQ0NTM5Mw==
Source
Description
Purpose: Next-generation sequencing (NGS) has revolutionized systems-based analysis of gene expression profiles of a chlorosis mutant of Pakchoi. The goals of this study are to transcriptome analysis of a chlorosis. Methods: mRNA profiles of the aboveground parts of WT and a chlorosis mutant were generated by deep sequencing, in triplicate, using Illumina Hiseq platform. The reference genome and gene model annotation files were downloaded from the genome website (http://brassicadb.org/brad/index.php, v1.5). An index of the reference genome was built using Bowtie v.2.2.3 and paired-end clean reads were aligned to the reference genome using TopHat v.2.0.12. qRT–PCR validation was performed using SYBR Green assays. Results: Based on the threshold values of absolute value of log2 ratio ≥ 1 and FDR ≤ 0.05, a total of 2958 DEGs was identified. Among 2958 DEGs, 9 DEGs related to chlorophyll synthesis and chlorophyll metabolism were identified. The DEGs identified by RNA sequencing were confirmed by qRT-PCR analysis, indicating that the data were reliable. These findings provide information that can be useful for investigating the molecular mechanisms of leaf color mutant. Conclusions: The results presented here reveal changes in the transcriptome profile of a chlorosis mutant. DEGs related to chlorophyll biosynthesis were detected.. These findings provide information that can be useful for investigating the molecular mechanisms underlying the response to chilling stress in cucumber and other plants. Overall design: mRNA profiles of chlorosis mutant were generated by deep sequencing, in triplicate, using Illumina Hiseq platform.

Genotype

Accession number Name Taxon