Study : Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis

Identification

Name
Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis
Identifier
dXJuOkVWQS9zdHVkeS9QUkpOQTMxNjEyOQ==
Source
Description
Acetyl-Coenzyme A (acetyl-CoA) is a central metabolite and the acetyl source for protein acetylation, particularly histone acetylation that promotes gene expression. However, the effect of acetyl-CoA levels on histone acetylation status in plants remains unknown. Here, we show that malfunctioned cytosolic acetyl-CoA carboxylase1 (ACC1) in Arabidopsis leads to elevated levels of acetyl-CoA and promotes histone hyperacetylation predominantly at lysine 27 of histone H3 (H3K27). The increase of H3K27 acetylation (H3K27ac) is dependent on ATP-citrate lyase which cleaves citrate to acetyl-CoA in the cytoplasm, and requires histone acetyltransferase GCN5. A comprehensive analysis of the transcriptome and metabolome in combination with the genome-wide H3K27ac profiles of acc1 mutants, demonstrate the dynamic changes of H3K27ac, gene transcripts and metabolites occurring in the cell by the increased levels of acetyl-CoA. This study suggests that H3K27ac is an important link between cytosolic acetyl-CoA level and gene expression in response to the dynamic metabolic environments in plants. Overall design: Examination of 9 different histone modifications in WT and acc1-5 seedlings and of H3K27 acetylation in acla-1i acc1-5 before and after treating with β-estrodial.

Genotype

Accession number Name Taxon