
TEiso: a pipeline for identification of transcripts
isoforms in the context of transposable elements

This tutorial will describe how the workflow TEiso analyse RNA_seq to find the relation between
TSS of each trancscripts (isoforms) and the closest transposable elements (TEs)

The workflow TEiso allows to do :

1) Mapping...1
2) Transcriptome assembly with Cufflinks ..3
4) Converting transcriptome assembly to bed file ...6
5) Converting transposable elements annotation file to bed file ..6
6) Taking the closest transposable elements to transcriptomes with bedtools7
7) Finding cases where TSS are closest to TEs..10

If you have any trouble to import your raw data into galaxy, or for your reads quality control, please
go to the page NGS: reads quality control from the URGI dev team.

If you want to try it yourself, you can use simulated data from URGI download :

– 1.SRR070420_1.fastq.bz2

– 2.SRR070420_2.fastq.bz2

– 3.sfru_corn_OGS2.0.gff3

– 4-sfru.mais.corrected.3.1.fa

– 5-TEs.sfru.mais.corrected.3.1_AllCSS.gff3

 Note : the data are already trimmed.

For more details on data format, see the slideshow on the format here

1) Mapping

TopHat is a program that aligns RNA-Seq reads to a genome in order to identify exon-exon splice
junctions. To make mapping faster, The reference genome must first be "indexed" by bowtie-build.
For more information see bowtie-bio.sourceforge.net manual and ccb.jhu.edu tophat manual.

Input format

Tophat takes reads files in Sanger FASTQ format and a FASTA file with the sequence(s) of genome.
Please note that you can access to your reference genome when you select « use a genome from
history ».

Figure 1, illustrates that we used the default values for all options of Tophat.

Summary 1 Tutorial_TEiso_galaxy_workflow

https://urgi.versailles.inra.fr/download/tutorial/TEiso/Introduction_aux_format_de_fichiers_sequences_alignements_variant-calling.pdf
https://urgi.versailles.inra.fr/download/tutorial/TEiso/5-TEs.sfru.mais.corrected.3.1_AllCSS.gff3
https://urgi.versailles.inra.fr/download/tutorial/TEiso/4-sfru.mais.corrected.3.1.fa
https://urgi.versailles.inra.fr/download/tutorial/TEiso/3.sfru_corn_OGS2.0.gff3
https://urgi.versailles.inra.fr/download/tutorial/TEiso/2.SRR070420_2.fastq.bz2
https://urgi.versailles.inra.fr/download/tutorial/TEiso/1.SRR070420_1.fastq.bz2
https://urgi.versailles.inra.fr/download/tutorial/NGS-reads-quality-control/Galaxy-reads-quality-control.pdf

Outputs

The tophat script produces a number of intermediate files, but in this pipeline, the intersting one is
« accepted_hits.bam » which is a list of read alignments.

Summary 2 Tutorial_TEiso_galaxy_workflow

Figure 1

2) Transcriptome assembly with Cufflinks
Cufflinks the program assembles transcriptomes from RNA-Seq data and quantifies their expression. One of
Cufflinks' best features is that it can function as a reference-based transcriptome assembler. Cufflinks can use
reference transcript annotation to guide assembly by using option -g. It can also identify novel transcripts in
your sequencing data by examining their alignments to the genome. For more information see cole-trapnell-
lab.github.io cufflinks tool documentation.

Input format
Cufflinks takes a list of read alignments in SAM or BAM format. In this pipeline, we use
«accepted_hits.bam» which is generated by Tophat.
Please note that you should select « Use refrence annoaion as guide » to generate the novel transcripts from
gene annotation dataset in GTF or GFF3 format (option -g).
Figure 2, illustrates that we used the default values for all options of Cufflinks.

Outputs

Cufflinks produces three output files, but in this pipeline, the intersting one is a GTF file « transcript.gtf »
contains Cufflinks' assembled isoforms.

Summary 3 Tutorial_TEiso_galaxy_workflow

Figure 2

http://cole-trapnell-lab.github.io/cufflinks/
http://cole-trapnell-lab.github.io/cufflinks/

3) Comparing the structure of assembled transcripts with Cuffcompare
After assembling a transcriptome from one or more samples, you’ll probably want to compare your
assembly to known transcripts. Cuffcompare examines the structure of each isoforms (here, created
transcript by cufflinks against a reference transcriptome) and then it generates a class code for each
of them. see broadinstitute.org documentation on Cufflinks.cuffcompare.

Class Codes

If you ran cuffcompare with the -r option, tracking rows will contain the following values.

Priority Code Description

1 = Match
2 c Contained
3 j New isoform
4 e A single exon transcript overlapping a reference

exon and at least 10 bp of a reference intron,
indicating a possible pre-mRNA fragment.

5 i A single exon transcript falling entirely with a
reference intron

6 r Repeat. Currently determined by looking at the
reference sequence and applied to transcripts
where at least 50% of the bases are lower case

7 p Possible polymerase run-on fragment
8 u Unknown, intergenic transcript
9 o Unknown, generic overlap with reference
10 . (.tracking file only, indicates multiple
classifications)

Input format

Cuffcompare takes a GTF file (here produced by Cufflinks) and a "reference" annotation.

Figure 3, illustrates that we used the default values for all options of Cuffcompare.

Outputs

Cufflinks produces four output files, but in this pipeline, the intersting one is a GTF file
« transcripts.gtf.tmap» contains class code of each isoform according to reference.

Summary 4 Tutorial_TEiso_galaxy_workflow

http://software.broadinstitute.org/cancer/software/genepattern/modules/docs/Cufflinks.cuffcompare/7

Summary 5 Tutorial_TEiso_galaxy_workflow

Figure 3

4) Converting transcriptome assembly to bed file

CufflinksGTFToBed is a python script to convert the transcriptome assembly of cufflinks (gtf file)
to a bed file. This step parses a gtf file to extract all essential information for this pipeline and then
writes output as bed file. Tracking columns of bed file will contain the following values.

Column Description

1 Name of the chromosome or scaffold of the transcript
2 Start position of the transcript
3 End position of the transcript
4 ID of the transcript
5 ID of the gene associated with the transcript
6 Strand of the transcript (defined as + (forward) or - (reverse).)
7 calculated FPKM of the transcript by Cufflinks

Input format

CufflinksGTFToBed takes a GTF file (here produced by Cufflinks).

Figure 4, illustrates a CufflinksGTFToBed schema.

Outputs

CufflinksGTFToBed produces a bed files .

5) Converting transposable elements annotation file to bed file

GFFToBed is a python script to convert a gff file of the transposable elements (TEs) to a bed file.
This step parses a gff file to extract all essential information for this pipeline and then writes output
as bed file. Tracking columns of bed file will contain the following values.

Column Description

1 Name of the chromosome or scaffold of the TE
2 Start position of the TE
3 End position of the TE
4 ID of the TE
5 Target of the TE (here result of REPET)
6 Strand of the TE (defined as + (forward) or – (reverse).)

Summary 6 Tutorial_TEiso_galaxy_workflow

Figure 4

https://urgi.versailles.inra.fr/Tools/REPET

Input format

GFFToBed takes a GFF file (here produced by Cufflinks).

Figure 5 illustrates a GFFToBed schema.

Outputs

GFFToBed produces a bed files .

6) Taking the closest transposable elements to transcriptomes with bedtools

Bedtools closest is a tool to find the closest locations between two bed files. TEiso goal is to find
the nearest transposable elements (TEs) to each transcriptomes by Bedtools closest. As we
explained above, two python scripts CufflinksGTFToBed and GFFToBed creat the bed files with
corresponding to transcriptome assembly of cufflinks (step 4) and transposable elements (step 5) .
Here, bedtools closest uses these two bed files to find the clossest TEs to each transcriptome
(isoforms) and also calculates the distance between them. The output of bedtools closest is also into
bed file. Tracking columns of final bed file will contain the following values.

Column Description

1 Name of the chromosome or scaffold of the transcript
2 Start position of the transcript
3 End position of the transcript
4 ID of the transcript
5 ID of the gene associated with the transcript
6 Strand of the transcript (defined as + (forward) or - (reverse).)
7 calculated FPKM of the transcript by Cufflinks
8 name of the chromosome or scaffold of the closest TE
9 Start position of the closest TE
10 End position of the closest TE
11 ID of the closest TE
12 Target of the closest TE (here result of REPET)
13 Strand of the closest TE (defined as + (forward) or – (reverse).)
14 Distance between closest TE and transcript.The reported distance for
overlapping/including features will be 0.

Summary 7 Tutorial_TEiso_galaxy_workflow

Figure 5

https://urgi.versailles.inra.fr/Tools/REPET

Input format

Bedtools closest takes two BED files. In this pipeline, the first bed file is for transcriptomes
(produced by CufflinksGTFToBed) and the second one is for TEs (produced by GFFToBed).

Figure 6, illustrates that we used the default values for all options of Bedtools closest.

Outputs

Bedtools closest produces a output file in format Bed.

Summary 8 Tutorial_TEiso_galaxy_workflow

Summary 9 Tutorial_TEiso_galaxy_workflow

Figure 6

7) Finding cases where TSS are closest to TEs

TEiso goal is to find the nearest transposable elements (TEs) to the TSS of each transcriptomes
(isoforms). ClosestToStartSite is a python script to parses the results of bedtools closest (step 6) and
extract the cases where TEs are close/overlap to/withTSS of each isoforms. The output of this step
is a bed file. Tracking columns of final bed file will contain the following values.

Column Description

1 Name of the chromosome or scaffold of the transcript
2 Start position of the transcript
3 End position of the transcript
4 ID of the transcript
5 ID of the gene associated with the transcript
6 Strand of the transcript (defined as + (forward) or - (reverse).)
7 calculated FPKM of the transcript by Cufflinks
8 name of the chromosome or scaffold of the closest TE
9 Start position of the closest TE
10 End position of the closest TE
11 ID of the closest TE
12 Target of the closest TE (here result of REPET)
13 Strand of the closest TE (defined as + (forward) or – (reverse).)
14 Distance between closest TE and transcript.

For Case TE overlap transcript: distance is region overlap
15 Discription of the TE's position according to the TSS

TE_near_TSS , TE_overlap_TSS, TE-inclus-gene, gene-inclus-TE

Input format

ClosestToStartSite takes a BED file which is produced by Bedtools closest. You can keep the
information of class code of isoforms by choosing « get information of class code » and give a GTF
file « transcripts.gtf.tmap» (produced by Cuffcompare).

Figure 7, illustrates a ClosestToStartSite schema.

Outputs

 ClosestToStartSite produces an output file in format Bed.

Summary 10 Tutorial_TEiso_galaxy_workflow

Figure 7

https://urgi.versailles.inra.fr/Tools/REPET

	1) Mapping
	Input format
	Outputs

	2) Transcriptome assembly with Cufflinks
	Input format
	Outputs
	Class Codes
	Input format
	Outputs

	4) Converting transcriptome assembly to bed file
	Input format
	Outputs

	5) Converting transposable elements annotation file to bed file
	Input format
	Outputs

	6) Taking the closest transposable elements to transcriptomes with bedtools
	Input format
	Outputs

	7) Finding cases where TSS are closest to TEs
	Input format
	Outputs

